
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/315373359

A GIS-based comparative evaluation of analytical hierarchy process and

frequency ratio models for landslide susceptibility mapping

Article  in  Physical Geography · February 2017

DOI: 10.1080/02723646.2017.1294522

CITATIONS

38
READS

233

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Influence of mining activities on eco-geological environment View project

A Special Issue for Journal Geofluids [SCI Index: JCR Q2, IF=1.534]: Behaviour and Composition of Fluids in Coal Mining View project

Qiqing Wang

China University of Mining and Technology

53 PUBLICATIONS   1,050 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Qiqing Wang on 13 November 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/315373359_A_GIS-based_comparative_evaluation_of_analytical_hierarchy_process_and_frequency_ratio_models_for_landslide_susceptibility_mapping?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315373359_A_GIS-based_comparative_evaluation_of_analytical_hierarchy_process_and_frequency_ratio_models_for_landslide_susceptibility_mapping?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Influence-of-mining-activities-on-eco-geological-environment?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/A-Special-Issue-for-Journal-Geofluids-SCI-Index-JCR-Q2-IF1534-Behaviour-and-Composition-of-Fluids-in-Coal-Mining?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qiqing-Wang-2?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qiqing-Wang-2?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/China-University-of-Mining-and-Technology?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qiqing-Wang-2?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qiqing-Wang-2?enrichId=rgreq-b577bcc0ddb0b778f1ce01116b52b4a9-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3MzM1OTtBUzo2OTI0NjAxNjY2MDY4NDhAMTU0MjEwNjc3NzA3MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tphy20

Download by: [China University of Mining Technology] Date: 08 March 2017, At: 16:51

Physical Geography

ISSN: 0272-3646 (Print) 1930-0557 (Online) Journal homepage: http://www.tandfonline.com/loi/tphy20

A GIS-based comparative evaluation of analytical
hierarchy process and frequency ratio models for
landslide susceptibility mapping

Qiqing Wang & Wenping Li

To cite this article: Qiqing Wang & Wenping Li (2017): A GIS-based comparative evaluation
of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping,
Physical Geography, DOI: 10.1080/02723646.2017.1294522

To link to this article:  http://dx.doi.org/10.1080/02723646.2017.1294522

Published online: 21 Feb 2017.

Submit your article to this journal 

Article views: 10

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tphy20
http://www.tandfonline.com/loi/tphy20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02723646.2017.1294522
http://dx.doi.org/10.1080/02723646.2017.1294522
http://www.tandfonline.com/action/authorSubmission?journalCode=tphy20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tphy20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02723646.2017.1294522
http://www.tandfonline.com/doi/mlt/10.1080/02723646.2017.1294522
http://crossmark.crossref.org/dialog/?doi=10.1080/02723646.2017.1294522&domain=pdf&date_stamp=2017-02-21
http://crossmark.crossref.org/dialog/?doi=10.1080/02723646.2017.1294522&domain=pdf&date_stamp=2017-02-21


Physical Geography, 2017
http://dx.doi.org/10.1080/02723646.2017.1294522

A GIS-based comparative evaluation of analytical 
hierarchy process and frequency ratio models for landslide 
susceptibility mapping

Qiqing Wang and Wenping Li

School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China

ABSTRACT
The purpose of this study is to assess the susceptibility of landslides 
in Wen County, China, using both analytical hierarchy process (AHP) 
and frequency ratio (FR) models. For this, a total of 529 landslides 
were identified and randomly split into two groups. The modeling 
group, which represented approximately 70% of the total landslides, 
was used as a training set to construct the susceptibility maps. 
The remaining 30% were used for validation purpose. Eight layers 
of landslide-related factors were prepared, including slope angle, 
altitude, distance to rivers, distance to roads, distance to faults, rainfall, 
lithology, and normalized difference vegetation index. Subsequently, 
landslide susceptibility maps were produced using the models. For 
verification, an area under curvature (AUC) and the seed cell area 
index (SCAI) assessments were applied. The AUC plot estimation 
results showed that the success rates of the AHP and FR models were 
83.55 and 88.42% and the prediction rates were 83.43 and 86.62%, 
respectively. According to the validation results of the AUC and SCAI 
evaluations, the map obtained from the FR model is more accurate 
than that from the AHP model. These landslide susceptibility maps 
can be used for optimum management by decision makers and land-
use planners.

1.  Introduction

Landslides, often causing damages to residential regions, economic losses, and human fatal-
ities, are much more common natural hazards in the world than any other natural disas-
ter, including earthquakes, floods, volcanoes and windstorms (Nefeslioglu, Gokceoglu, & 
Sonmez, 2008; Solaimani, Mousavi, & Kavian, 2013). Likewise, there are frequent landslides 
in China, which often cause significant damage to people and property. It is reported that 
more than 5000 hazards associated with landslides occurred in the first half of 2015, resulting 
in more than 100 persons dead or missing and in economic losses of ¥7.3 billion. In the 
study area, landslides occur frequently due to special geomorphological, geological, and 
hydrogeological conditions. For instance, more than 20 hazards associated with landslides 
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occurred on 21 September 2010 in the Tielou township of Wen County, causing serious 
damage to many roads and large casualties. In this study area, a total of 529 landslides were 
identified and mapped (Figure 1). These landslides, mainly distributed along roads or rivers 
and concentrated in groups, were mainly shallow soil slips and debris flows. To date, not 
much work has been done on landslide susceptibility and risk analysis in Wen County. 
Therefore, it is necessary to assess the landslide susceptibility of the study area.

Nowadays, several techniques have been applied for landslide susceptibility mapping by 
many researchers (Nourani, Pradhan, Ghaffari, & Sharifi, 2014). These techniques can be 
divided into qualitative and quantitative methods (Yalcin, Reis, Aydinoglu, & Yomralioglu, 
2011). Qualitative methods, including analytic hierarchy process and its combinations, such 
as multi-criteria evaluation (MCE) and multi-criteria decision analysis (MCDA), are based 
on heuristic approaches, which rely mainly on the experience of experts (Abella & Van 
Westen, 2007; Akgun, 2012; Erener, Mutlu, & Düzgün, 2015; Gorsevski & Jankowski, 2010; 
Kavzoglu, Sahin, & Colkesen, 2014; Park, Choi, Kim, & Kim, 2013; Pourghasemi, Moradi, 
Fatemi Aghda, Gokceoglu, & Pradhan, 2014; Pourghasemi, Pradhan, & Gokceoglu, 2012). 
Quantitative methods depend on obtaining the probability of sliding from quantitative 
techniques (Erener et al., 2015). These methods, including the frequency ratio model (Lee 
& Sambath, 2006; Pradhan & Lee, 2010; Yilmaz, 2009), logistic regression model (Ayalew & 
Yamagishi, 2005; Bui, Tuan, Klempe, Pradhan, & Revhaug, 2015), index of entropy model 
(Devkota et al., 2013; Wang, Li, Chen, & Bai, 2015), weights of evidence model (Dahal  
et al., 2008; Neuhäuser & Terhorst, 2007; Pradhan, Oh, & Buchroithner, 2010), decision tree 

Figure 1. Location map of the study area.
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model (Pradhan, 2013; Saito, Nakayama, & Matsuyama, 2009; Tsangaratos & Ilia, 2015), 
support vector machine (Bui et al., 2015; POURGHASEMI, JIRANDEH, PRADHAN, XU, 
& GOKCEOGLU, 2013; Yao, Tham, & Dai, 2008), bivariate statistics (Nandi & Shakoor, 
2010; Yalcin, 2008; Yalcin et al., 2011), and multivariate analysis (Baeza & Corominas, 2001; 
Komac, 2006; Nandi & Shakoor, 2010) have been widely applied to landslide susceptibility 
mapping.

Determination of areas with high potential for landsliding can be used for optimum 
management by decision makers and land-use planners. Assessing the landslide suscepti-
bility of the study area has been not done in the study area until now. This paper attempts to 
produce landslide susceptibility maps of Wen County, China, using the analytic hierarchy 
process (AHP) and frequency ratio (FR) methods, and based on a geographical information 
system (GIS). Landslide susceptibility maps produced by the two methods were compared 
and evaluated using validation data sets. The findings of the present study can be useful for 
the purpose of mitigating local hazards. Moreover, similar methods can be used elsewhere 
where the same topographical and geological features prevail.

2.  Study area

Wen County, which is the study area, is located in the southeast of Gansu Province, China, 
(Figure 1) and covers an area of approximately 4994 km2. The site lies between the latitudes 
32°35′43″ and 33°20′36″N and the longitudes 104°16′16″ and 105°27′29″ E. The terrain of 
this study area is high in the west but low in the east. Mountainous terrain covers about 
90% of the area. The basin floor is about 550 m a.s.l. and the highest peak is at 4187 m 
a.s.l. The climate is warm temperate humid monsoon, with mild a climate, four distinct 
seasons, hot and rainy summers, and cold and dry winters. The annual rainfall in this area 
is 400–800 mm, and the average summer and winter temperatures are estimated to be 
24.8 and 3.6 °C, respectively. Within the boundary of the County, the Bailong and Baishui 
Rivers are among the larger river systems, running from west to east into the Jialing River, 
a tributary of the Yangtze River. By the end of 2012, the County had a total population of 
240,900. Major settlements are distributed on both sides of the Bailong River, Baishui River, 
and their tributaries. In the study area, the landslides were mainly debris flows and shallow 
soil slips that occurred during or shortly after the days of high intensity rainfall.

3.  Materials and methods

3.1.  Landslide inventory

The key starting point in landslide susceptibility analysis is to prepare a landslide inventory 
map (Solaimani et al., 2013). Generally, landslide inventory maps can be produced either 
by collecting the information related to landslides or by analyzing satellite imagery and 
aerial photographs, coupled with field surveys (Pradhan & Kim, 2014). In this study, land-
slides (including potential landslides) in the study area were identified using 1:50,000-scale 
aerial-photo interpretations and field surveys. Additionally, historical records of landslides, 
obtained from the internet and published literature, were also used (Bi, 2014; Xie, 2013). 
According to our field observations, the historical landslides were still visible. A total of 
529 landslides locations (including 82 potential landslides) were detected and mapped 
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(Figure 1), and medium-size landslides (volume < 0.1 million m3) and small landslides 
(volume  >  0.1 million but  <  10 million m3) accounted for about 80% of all landslides. 
Then, the inventory was randomly split into two datasets: 70% (370 landslide locations) 
was used for training the models and the remaining 30% (159 landslide locations) was used 
for validation purpose.

3.2.  Spatial database construction

Determining the conditioning factors for landslides is crucial for developing a method for 
the assessment of landslide susceptibility (Ercanoglu & Gokceoglu, 2002; Shahabi, Hashim, 
& Ahmad, 2015). To produce a landslide susceptibility map, a spatial database that considers 
landslide-related factors, such as slope angle, altitude, distance to rivers, distance to roads, 
distance to faults, lithology, rainfall, and normalized difference vegetation index (NDVI), 
was designed and constructed.

The slope angle is regularly considered in landslide susceptibility studies since it is directly 
related to landslide incidence (Dai & Lee, 2001; He, Pan, Dai, Wang, & Liu, 2012). In this 
study, the slope map was extracted from the 25 m × 25 m digital elevation model (DEM) of 
the study area collected from the Advanced Space-borne Thermal Emission and reflection 
radiometer (ASTER). The slope angle of the study area was divided into six slope cate-
gories (Figure 2(a)). Altitude is also considered as another important factor in landslide 
susceptibility analysis. In general, altitude influences biological and natural factors, such as 
temperature, vegetation, and human activity. In turn, these conditions have the potential 
to affect slope stability and generate slope failure (Kavzoglu et al., 2014; Meng et al., 2015). 
In this study, the altitude of the study area derived from DEM was classified into six classes 
using 400-m intervals:<900, 900–1300, 1300–1700, 1700–2100, 2100–2500, and > 2500 m 
and is shown in Figure 2(b).

Three proximity parameters – distance to rivers, distance to roads, and distance to 
faults –were taken into account in the study. Distance to rivers is an important landslide 
conditioning factor. Streams can decrease slope stability and lead to landslide occurrence by 
eroding slopes or saturating the lower part of material until the water level increases (Dai & 
Lee, 2001; He et al., 2012; Solaimani et al., 2013). Similarly, the distance to roads is another 
important factor since the load in the toe of slope can be reduced by roadcuts (Yalcin et al., 
2011). In this study, distances to rivers and roads were calculated by the Euclidean distance 
tool of ArcGIS 10.0 based on the drainage and road maps (1:50,000 scale), respectively. 
Six different buffer zones, with 200-m intervals, were created for the analysis (Figure 2(c) 
and (d)). Faults are responsible for triggering a large number of landslides because of the 
tectonic breaks that usually decrease the rock strength (Devkota et al., 2013; Qiao, Li, & 
Zhang, 2014). Generally speaking, landslides occur more frequently near faults (Meng et al., 
2015). In this study, the distance-to-faults map was extracted from the geological map at 
1:50,000 scale. Buffer intervals were set to 1000 m (Figure 2(e)).

Precipitation is considered to be a very important external triggering factor for landslide 
occurrence (van Westen, van Asch, & Soeters, 2006; Yang et al., 2015). In the present study, 
the average annual rainfall was used to characterize the precipitation factor. The annual rain-
fall of the study area is shown as Figure 2(f), and reclassified into four classes:<500, 500–600, 
600–700, 700–800, and > 800 mm/year. Landslides are controlled by the rock properties of 
the land surface because different rock units have different landslide susceptibility values 
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Figure 2. Maps of landslide susceptible conditioning factors: (a) slope angle; (b) altitude; (c) distance to 
rivers; (d) distance to roads; (e) distance to faults; (f ) rainfall; (g) lithology; and (h) NDVI.
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Figure 2. (Continued)
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Figure 2. (Continued)
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Figure 2. (Continued)
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(Youssef, 2015). In this study, the lithology classification was prepared from a 1:50,000-scale 
geological map. The study area is covered with various types of lithological units (Figure 
2(g)), and their names, lithologic characteristics, and ages of the geological units are given 
in Table 1.

The normalized difference vegetation index (NDVI) map was obtained from Landsat 
ETM+ satellite images from March 2009. The NDVI value was calculated using the formula:

 

where IR is the infrared value and R is the red portion of the electromagnetic spectrum, 
respectively (Meng et al., 2015). The presence of dense green vegetation implies high NDVI 
values (Pradhan & Lee, 2010; Shahabi et al., 2015). In this study, the NDVI map was divided 
into four classes (Figure 2(h)).

3.3.  Susceptibility mapping models

3.3.1.  Analytical hierarchy process (AHP) model
The analytical hierarchy process (AHP) model, a simple decision-making tool to deal with 
complex, unstructured, and multi-attribute problems, was first developed by Saaty (1980). 
It has been widely applied in various fields of natural resources and environmental man-
agement (Karimi, Mehrdadi, Hashemian, Bidhendi, & Moghaddam, 2011; Lin & Shieh, 
1995; Rahimdel & Ataei, 2014; Rahmati, Samani, Mahdavi, Pourghasemi, & Zeinivand, 
2015; Zhang, Sun, & Qin, 2012). This model has been widely used in landslide susceptibil-
ity analysis, and procedures for applying it to landslide susceptibility have been detailed in 
the literature (Hasekioğulları & Ercanoglu, 2012; Kayastha, Dhital, & De Smedt, 2013; Ma, 
Wang, Yuan, Zhao, & Guo, 2013; Mansouri Daneshvar, 2014). The AHP requires the creation 
a of reciprocal pair-wise comparison matrix (Robinson, van Klinken, & Metternicht, 2010). 
To develop the pairwise comparison matrix, each landslide factor was rated against every 
other factor by assigning a relative dominant value ranging from 1 to 9 in accordance with 
the relative importance of the factors concerning landslide frequency. The value also varies 
between the reciprocals 1/2 and 1/9 for inverse comparison (Mondal & Maiti, 2013). In 
AHP, an index of consistency, known as the consistency ratio (CR), is used to indicate the 
probability that the matrix judgments were randomly generated (Saaty, 1980):
 

where RI is the average of the resulting consistency index depending on the order of the 
matrix given by Saaty (1980). The CI is the consistency index and can be expressed as:

(1)NDVI = (IR − R)∕(IR + R).

(2)CR = CI∕RI .

(3)CI =
(

�max − n
)/

(n − 1).

Table 1. Description of geological units of the study area (Xie, 2013).

No. Code Lithology
A γ, δ The hard intrusive rocks
B C Layered hard and half hard limestone and dolomite
C P1, T Layered, thin-layered, soft-hard sandy-slate, limestone and sandstone
D D2 Layered, thin-layered, soft-hard sandstone and shale, and carbonaceous-slate
E Pz1 Layered, thin-layered, soft-hard fine-sandstone, phyllite and slate
F J Layered, soft conglomerate and shale
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where λmax is the largest eigenvalue of a preference matrix and n is the order of the matrix 
(Akgun, Dag, & Bulut, 2008). According to Saaty (1980), the CR should be < 0.1 to indicate 
the overall consistency of the pairwise comparison matrix, otherwise the comparison matrix 
should be revised (Mansouri Daneshvar, 2014).

In this study, expert analysis was used to score each major conditioning factor, using 
scoring criteria based on relative importance. Suggestions and opinions were collected 
and consulted from knowledgeable and experienced experts and colleagues from scien-
tific research organizations. The eight conditioning factors represented by the digital maps 
have been ranked with respect to their impact on landsliding (Table 2). The last column of 
Table 2 is the weight values for each factor class. The weighting factor (Wj) values of each 
factor, given in Table 3, were determined. These weight values indicate the importance of a 
factor or a class. For instance, distance to roads is the most important conditioning factor 
followed by distance to roads, distance to rivers, NDVI, rainfall, distance to faults, while 
conditioning factors like lithology, slope angle, and altitude are less important. Finally, the 
landslide susceptibility index (LSI) is calculated according to the following equation (Ma 
et al., 2013; Pourghasemi et al., 2012):

3.3.2.  Frequency ratio (FR) model
The frequency ratio model, a simple geospatial assessment tool, is based on the distribu-
tion of landslides and each landslide-related factor so that the correlation between the 
location of the landslide and the factors for the area can be represented (Lee & Pradhan, 
2007; Saadatkhah, Kassim, & Lee, 2015; Youssef, Al-Kathery, & Pradhan, 2015). Firstly, the 
frequency ratios (a/b) for the class of each factor were calculated by dividing the landslide 
occurrence ratio (a) by the area ratio (b) (Akgun et al., 2008). A value of 1 is an average 
value. If the value is greater than 1, it means a high correlation, and a value lower than 1 
indicates lower correlation (Nourani et al., 2014). Then the landslide susceptibility index 
was calculated by a summation of each factor ratio value as:
 

where LSI is the landslide susceptibility index, FR is the frequency ratio of a factor, and 
n is the total number of the landslide-related factors (Ozdemir & Altural, 2013).

4.  Results and discussion

4.1.  Landslide susceptibility mapping using analytical hierarchy process model

The LSI value of the study area ranged from 0.046 to 0.410. For zonation of the study area, 
the values acquired were reclassified into five relative susceptibility classes: very low, low, 
moderate, high, and very high using the natural break method (Figure 3). According to 
the landslide susceptibility map produced from the AHP model, 29.61% of the total area is 
found to have very low landslide susceptibility. Low, moderate, and high susceptible zones 
represent 35.28, 20.12, and 10.24% of the total area, respectively. The very high landslide 
susceptibility area is 4.75% of the total study area.

(4)
LSI =

(

slope angle × 0.054
)

+ (altitude × 0.027) + (distance to rivers × 0.187)

+(distance to roads × 0.254) + (distance to faults × 0.113)

+
(

lithology × 0.077
)

+ (rainfall × 0.137) + (NDVI × 0.149).

(5)LSI = FR1 + FR2 + FR3 +⋯ + FR
n
.
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4.2.  Landslide susceptibility mapping using frequency ratio model

The calculated frequency ratios of each conditioning factor’s classes, shown in Table 4, 
show the importance of the respective classes in the slope instability. It can be observed 
from Table 4 that the slope angle class 20–30° has the highest value of FR (1.467) and slope 
class > 50° has the lowest value of FR (0.158). This means that landslide occurrence increases 
by the increase in slope angle up to a certain extent, and then decreases. A similar trend 

Table 2. Pair-wise comparison matrix, AHP weightings, and consistency ratio of factor classes.

Conditioning factors Classes (1) (2) (3) (4) (5) (6) Weightings
Slope angle(°) (1) 0–10 1           0.064
  (2) 10–20 3 1         0.194
  (3) 20–30 5 2 1       0.391
  (4) 30–40 3 1 1/3 1     0.181
  (5) 40–50 2 1/2 1/4 1/2 1   0.107
  (6) >50 1 1/3 1/5 1/3 1/2 1 0.064
  Consistency ratio: 0.008              
Altitude(m) (1) <900 1           0.207
  (2) 900–1300 2 1         0.341
  (3) 1300–1700 1 1/2 1       0.207
  (4) 1700–2100 1/2 1/3 1/2 1     0.122
  (5) 2100–2500 1/3 1/4 1/3 1/2 1   0.075
  (6) >2500 1/4 1/5 1/4 1/3 1/2 1 0.049
  Consistency ratio: 0.011              
Distance to rivers(m) (1) 0–200 1           0.450
  (2) 200–400 1/2 1         0.236
  (3) 400–600 1/5 1/2 1       0.157
  (4) 600–800 1/7 1/3 1/3 1     0.086
  (5) 800–1000 1/8 1/5 1/5 1/3 1   0.045
  (6) >1000 1/9 1/7 1/6 1/5 1/3 1 0.026
  Consistency ratio: 0.056              
Distance to roads(m) (1) 0–200 1           0.431
  (2) 200–400 1/2 1         0.241
  (3) 400–600 1/4 1/2 1       0.166
  (4) 600–800 1/6 1/3 1/3 1     0.090
  (5) 800–1000 1/8 1/5 1/5 1/3 1   0.046
  (6) >1000 1/9 1/7 1/6 1/5 1/3 1 0.026
  Consistency ratio: 0.048              
Distance to faults(m) (1) 0–1000 1           0.489
  (2) 1000–2000 1/3 1         0.256
  (3) 2000–3000 1/4 1/3 1       0.141
  (4) 3000–4000 1/6 1/4 1/3 1     0.069
  (5) >4000 1/7 1/5 1/4 1/2 1   0.046
  Consistency ratio:0.045              
Lithology (1) A 1           0.077
  (2) B 1/5 1         0.023
  (3) C 2 7 1       0.124
  (4) D 4 8 3 1     0.391
  (5) E 3 9 2 1/3 1   0.219
  (6) F 3 9 2 1/4 1/2 1 0.166
  Consistency ratio: 0.053              
Rainfall(mm/yr) (1) <500 1           0.062
  (2) 500–600 2 1         0.097
  (3) 600–700 3 2 1       0.160
  (4) 700–800 4 3 2 1     0.263
  (5) >800 5 4 3 2 1   0.417
  Consistency ratio: 0.015              
NDVI (1) <0.041 1           0.417
  (2) 0.041–0.118 1/2 1         0.263
  (3) 0.118–0.194 1/3 1/2 1       0.160
  (4) 0.194–0.288 1/4 1/3 1/2 1     0.097
  (5) >0.288 1/5 1/4 1/3 1/2 1   0.062
  Consistency ratio: 0.015              
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was also found in the literature (Kanungo, Sarkar, & Sharma, 2011; Wang et al., 2015). For 
altitudes above 900 m, the frequency ratio was 7.232, which indicates a very high proba-
bility of landslide occurrence. In the case of the relationship between landslide occurrence 
and distance to rivers, as the distance to rivers increases, the landslide probability gener-
ally decreases. At a distance of < 200 m, the ratio was > 1, indicating a high probability 
of landslide occurrence, and at distances > 1000 m, the ratio was < 1, indicating a lower 
probability. Similarly, for distance to roads, the closer the road, the greater is the landslide 
probability. At a distance of < 200 m, the ratio was 6.808, indicating a high probability of a 
landslide. The ratio was < 1 at a distance > 1000 m, and this indicates a low probability. For 
distance to faults, the frequency ratio was highest (1.24) at distance of < 1000 m. In the case 
of rainfall, the landslide occurrence values were higher in the < 500 mm/year class. In case 
of lithology, groups D and E (see in details in Table 1) have a high frequency ratio (1.323, 

Table 3. The weight (Wj) of each landslide conditioning factors by AHP model.

Criteria (1) (2) (3) (4) (5) (6) (7) (8) Wj

(1) Slope angle 1               0.054
(2) Altitude 1/3 1             0.027
(3) Distance to rivers 4 7 1           0.187
(4) Distance to roads 5 8 2 1         0.254
(5) Distance to faults 3 6 1/2 1/3 1       0.113
(6) Lithology 2 5 1/3 1/4 1/2 1     0.077
(7) Rainfall 4 7 1 1/2 1 2 1   0.137
(8) NDVI 3 6 1/2 1/2 2 3 2 1 0.149
Consistency ratio: 0.037                  

Figure 3. Landslide susceptibility map produced by the AHP model.
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1.010), which indicates that the probability of landslide occurrence in these lithological 
units is high. For group B of lithology, the ratio was 0.00, showing that these lithological 
units are not susceptible to landslide. In the case of NDVI, the frequency ratio was 2.667 for 
NDVI values < 0.041, which indicates a high landslide occurrence probability. For NDVI 
values between 0.118 and 0.194, the frequency ratio was 0.497, indicating a low landslide 
occurrence probability.

Landslide susceptibility index (LSI) values, ranging from 2.215 to 26.643, were classified 
by the natural break method and grouped into five susceptibility classes for visual inter-
pretation: very low, low, moderate, high, and very high. In the landslide susceptibility map 
produced from the index of entropy model (Figure 4), the very low susceptibility zone covers 

Table 4. Frequency ratio (FR) values of the landslide-conditioning parameters.

aLithologies are described in Table 1.

Conditioning factors Classes Percentage of domain (%) Percentage of landslide (%) FR
Slope angle (°) 0–10 5.936 5.405 0.911
  10–20 16.537 22.162 1.340
  20–30 25.241 37.027 1.467
  30–40 26.891 19.189 0.714
  40–50 18.571 15.135 0.815
  >50 6.823 1.081 0.158
Altitude (m) < 900 4.186 30.270 7.232
  900–1300 13.653 36.216 2.653
  1300 –1700 22.114 25.676 1.161
  1700–2100 25.096 7.838 0.312
  2100–2500 18.036 0.000 0.000
  > 2500 16.915 0.000 0.000
Distance to rivers (m) < 200 10.863 38.649 3.558
  200–400 9.778 26.757 2.737
  400–600 9.430 11.081 1.175
  600–800 9.283 8.919 0.961
  800–1000 8.837 5.135 0.581
  > 1000 51.809 9.459 0.183
Distance to roads (m) < 200 4.644 31.622 6.808
  200–400 4.085 17.568 4.301
  400–600 3.871 12.162 3.142
  600–800 3.824 9.730 2.544
  800–1000 3.715 4.865 1.309
  > 1000 79.859 24.054 0.301
Distance to faults (m) < 1000 14.306 24.865 1.738
  1000–2000 11.470 15.405 1.343
  2000–3000 8.565 9.189 1.073
  3000–4000 6.928 4.054 0.585
  > 4000 58.730 46.486 0.792
Rainfall (mm/yr) < 500 25.561 47.297 1.850
  500–600 23.749 21.351 0.899
  600–700 12.240 5.676 0.464
  700–800 18.091 5.135 0.284
  > 800 20.359 20.541 1.009
Lithologya A 4.072 2.162 0.531
  B 1.354 0.000 0.000
  C 15.975 10.541 0.660
  D 25.935 34.324 1.323
  E 50.290 50.811 1.010
  F 2.374 2.162 0.911
NDVI < 0.041 10.742 28.649 2.667
  0.041–0.118 26.562 32.703 1.231
  0.118–0.194 31.002 15.405 0.497
  0.194–0.288 21.717 12.432 0.572
  > 0.288 9.976 10.811 1.084
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44.36% of the total study area; whereas low, moderate, high, and very high susceptibility 
zones cover 30.56, 14.05, 7.32, and 3.71% of the total area, respectively.

4.3.  Verification and comparison of the landslide susceptibility mapping

A proper validation is required to produce a certain landslide susceptibility map for any area 
(Youssef, Pourghasemi, El-Haddad, & Dhahry, 2015). In this study, validation and compar-
ison of the landslides susceptibility maps produced by AHP and FR models were checked 
by using the area under curvature (AUC) and the seed cell area index (SCAI) methods 
(Chung & Fabbri, 1999; Kamp, Owen, Growley, & Khattak, 2010; van Westen, Rengers, & 
Soeters, 2003). The area-under-curvature (AUC) method works by creating success rate and 
prediction rate curves. Rate curves show the cumulative percentage of observed landslide 
occurrences (x-axis) versus cumulative percentage of decreasing landslide susceptibility 
index value (y-axis) (Kamp et al., 2010; Kayastha, Dhital, & De Smedt, 2012). For validation 
using the AUC method, the total landslides observed in the study area were divided into 
two groups: 70 and 30% of 529 landslide locations were used for training and validation of 
models, respectively. Success rate and prediction rate curves were created on the basis of 
training data and validating data, respectively, and their AUC were calculated (Figure 5). The 
success rate curve showed that the FR model has a higher area under the curve (AUC) value 
(88.42%) than the AHP model (83.55%). The prediction rate curve showed that prediction 
accuracy was 83.43 and 86.62% for AHP and FR models, respectively. From the evaluation 
results of the AUC method, it can be seen that the FR model exhibited a better result than 

Figure 4. Landslide susceptibility map produced by the FR model.
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AHP model for landslide susceptibility mapping in the study area. In order to compare the 
results of the two models, the seed cell area index (SCAI) method, proposed by Süzen and 
Doyuran (2004), also was applied. The SCAI value, as presented in Table 5, is simply the 
density of landslides among the classes and is calculated by dividing the susceptibility class 
area percent values by the landslide seed cell percent values (Chen et al., 2016; Conforti, 
Robustelli, Muto, & Critelli, 2012; Yilmaz, Topal, & Süzen, 2012). Generally, the produced 
maps are accurate when the high and very high susceptibility classes have very low SCAI 
values, whereas the SCAI values of the very low and low susceptibility classes are very high 

Figure 5. AUC representing quality model (a) success rate curve and (b) prediction rate curve.
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(Akgun, 2012; Conforti et al., 2012; Pourghasemi et al., 2014). Therefore, it can also be seen 
from Table 5 that the map obtained from the FR model is more accurate than that from the 
AHP model for landslide susceptibility mapping.

The FR model is a quantitative method, based on the objective analysis of the relation-
ship between landslide-related factors and many landslides. Therefore, it can objectively 
reflect the relationship between landslide distribution and landslide-related factors so that 
the assessment of landslide susceptibility is closer to the objective reality. The AHP model 
is a qualitative method. It relies on personal experience of reviewers who require a consid-
erable understanding of the causes of landslides. Therefore, this method seriously relies on 
the experience of experts. The result of the evaluation, including evaluation rule selection 
and factor weight determination, also has some subjectivity. Generally, with more data of 
landslide locations in the study area, it is more suitable to use the FR method. In addition, 
there should be an emphasis on the models developed on some basic assumptions, including 
topography, geology, and streams. If data (factors causing the landslides, such as extreme 
rainfall, earthquake shaking) could be added to the models, then a more accurate analysis 
could be done. Furthermore, each factor classification method has more or less influence 
on the evaluation results. It needs to be further studied and optimized in a future study.

5.  Conclusion

In the present study, two landslide susceptibility mapping models, the AHP and the FR 
models, were applied to Wen County, China, as the study area, using a GIS for estimating 
the susceptible areas of the study area. Their performances were analyzed through compari-
sons. The relationship between a landslide occurrence and the identified eight conditioning 
factors of slope angle, altitude, distance to rivers, distance to roads, distance to faults, rainfall, 
lithology, and normalized difference vegetation index (NDVI) was evaluated using the AHP 
and FR methods. In this process, a total of 529 landslides were mapped, out of which 370 
(70%) were randomly selected to build landslide susceptibility models, while the remaining 
159 (30%) were applied to validate the models. Landslide susceptibility maps produced by 
the AHP and FR models classified the study area into five zones, with susceptibility degrees 
of very low, low, moderate, high, and very high. To validate the prediction accuracy of the 
applied models, the obtained maps were compared with actual landslide locations, and the 
verification results were quantitatively analyzed using the AUC and SCAI methods. The 
AUC plot estimation results showed that the two models applied in this study showed rea-
sonably good accuracy, with the FR model as the better one. According to the comparison 
of the susceptibility maps, by using the seed cell area index (SCAI) method, the FR model 

Table 5. The densities of landslide occurrence among the landslide susceptibility classes for AHP and 
FR models.

Susceptibility classes

Area (%) Seed (%) SCAI

AHP FR AHP FR AHP FR
Very low 29.61 44.36 3.97 2.08 7.46 21.33
Low 35.28 30.56 11.15 11.91 3.16 2.57
Moderate 20.12 14.05 17.96 20.23 1.12 0.69
High 10.24 7.32 32.51 31.38 0.31 0.23
Very High 4.75 3.71 34.40 34.40 0.14 0.11
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also exhibited higher performance than the AHP model. The landslide susceptibility maps 
thus produced can be used to mitigate hazards associated with landslides and to land-cover 
planning.
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